Skip to content
7h4um
Search
K
Main Navigation
Home
About
Links
Examples
Appearance
Menu
Return to top
On this page
Derivative
Proofs of the Derivative Rules
sin
x
lim
h
→
0
sin
(
x
+
h
)
−
sin
x
h
=
lim
h
→
0
sin
x
cos
h
+
cos
x
sin
h
−
sin
x
h
=
lim
h
→
0
sin
(
x
)
cos
(
h
−
1
)
+
cos
x
sin
h
h
=
sin
(
x
)
lim
h
→
0
cos
(
h
−
1
)
h
+
cos
(
x
)
lim
h
→
0
sin
h
h
lim
h
→
0
cos
(
h
−
1
)
h
=
0
lim
h
→
0
sin
h
h
=
1
sin
(
x
)
lim
h
→
0
cos
(
h
−
1
)
h
+
cos
(
x
)
lim
h
→
0
sin
h
h
=
cos
x
ln
x
d
d
x
ln
x
=
lim
h
→
0
ln
(
x
+
h
)
−
ln
x
h
=
lim
h
→
0
ln
(
x
+
h
x
)
h
=
lim
h
→
0
ln
(
x
x
+
h
x
)
h
=
lim
h
→
0
ln
(
1
+
h
x
)
h
=
lim
h
→
0
ln
(
1
+
h
x
)
1
h
Now, deal with
(
1
+
h
x
)
1
h
:
e
=
lim
h
→
∞
(
1
+
1
h
)
h
e
=
lim
h
→
0
(
1
+
h
)
1
h
Change variable
h
to
h
/
x
,
x
is a nonzero constant.
e
=
lim
h
/
x
→
0
(
1
+
h
x
)
x
h
e
=
lim
h
→
0
(
1
+
h
x
)
x
h
e
1
x
=
lim
h
→
0
(
1
+
h
x
)
x
h
⋅
1
x
e
1
x
=
lim
h
→
0
(
1
+
h
x
)
1
h
d
d
x
ln
x
=
lim
h
→
0
ln
(
1
+
h
x
)
1
h
=
lim
h
→
0
ln
e
1
x
=
lim
h
→
0
1
x
=
1
x
(
f
g
)
′
=
f
′
g
+
f
g
′
(
f
g
)
′
=
lim
h
→
0
f
(
x
+
h
)
g
(
x
+
h
)
−
f
(
x
)
g
(
x
)
h
=
lim
h
→
0
f
(
x
+
h
)
g
(
x
+
h
)
−
f
(
x
)
g
(
x
)
−
f
(
x
+
h
)
g
(
x
)
+
f
(
x
+
h
)
g
(
x
)
h
=
lim
h
→
0
f
(
x
+
h
)
(
g
(
x
+
h
)
−
g
(
x
)
)
+
g
(
x
)
(
f
(
x
+
h
)
−
f
(
x
)
)
h
=
lim
h
→
0
f
(
x
+
h
)
(
g
(
x
+
h
)
−
g
(
x
)
)
h
+
lim
h
→
0
g
(
x
)
(
f
(
x
+
h
)
−
f
(
x
)
)
h
=
lim
h
→
0
(
f
(
x
+
h
)
(
g
(
x
+
h
)
−
g
(
x
)
)
h
)
+
lim
h
→
0
(
g
(
x
)
(
f
(
x
+
h
)
−
f
(
x
)
)
h
)
=
(
lim
h
→
0
f
(
x
+
h
)
)
(
lim
h
→
0
g
(
x
+
h
)
−
g
(
x
)
h
)
+
(
lim
h
→
0
g
(
x
)
)
(
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
)
=
f
(
x
)
g
′
(
x
)
+
f
′
(
x
)
g
(
x
)
x
n
y
=
x
n
ln
y
=
ln
x
n
ln
y
=
n
ln
x
ln
y
=
n
ln
x
d
d
x
(
ln
y
)
=
d
d
x
(
n
ln
x
)
y
′
y
=
n
x
y
′
=
y
n
x
y
′
=
x
n
n
x
y
′
=
n
x
n
−
1
Series
Misc
Differentiation of Geometric Series
∑
n
=
0
∞
q
n
=
1
1
−
q
,
|
q
|
<
1
The first derivative:
d
d
q
(
∑
n
=
0
∞
q
n
)
=
∑
n
=
1
∞
n
q
n
−
1
=
d
d
q
(
1
1
−
q
)
=
0
−
1
×
−
1
(
1
−
q
)
2
=
1
(
1
−
q
)
2
∑
n
=
1
∞
n
q
n
−
1
=
1
(
1
−
q
)
2
∑
n
=
1
∞
n
q
n
−
1
⋅
q
=
q
(
1
−
q
)
2
∑
n
=
1
∞
n
q
n
=
q
(
1
−
q
)
2
The second derivative:
d
d
q
(
∑
n
=
0
∞
n
q
n
)
=
∑
n
=
1
∞
n
2
q
n
−
1
=
d
d
q
(
q
(
1
−
q
)
2
)
=
1
⋅
(
1
−
q
)
2
−
q
⋅
−
1
⋅
2
(
1
−
q
)
(
1
−
q
)
4
=
1
−
2
q
+
q
2
+
2
q
−
2
q
2
(
1
−
q
)
4
=
1
−
q
2
(
1
−
q
)
4
∑
n
=
1
∞
n
2
q
n
−
1
=
1
−
q
2
(
1
−
q
)
4
∑
n
=
1
∞
n
2
q
n
=
q
(
1
+
q
)
(
1
−
q
)
(
1
−
q
)
4
=
q
(
1
+
q
)
(
1
−
q
)
3