Skip to content

Derivative

Proofs of the Derivative Rules

sinx

limh0sin(x+h)sinxh=limh0sinxcosh+cosxsinhsinxh=limh0sin(x)cos(h1)+cosxsinhh=sin(x)limh0cos(h1)h+cos(x)limh0sinhhlimh0cos(h1)h=0limh0sinhh=1sin(x)limh0cos(h1)h+cos(x)limh0sinhh=cosx

lnx

ddxlnx=limh0ln(x+h)lnxh=limh0ln(x+hx)h=limh0ln(xx+hx)h=limh0ln(1+hx)h=limh0ln(1+hx)1h

Now, deal with (1+hx)1h:

e=limh(1+1h)he=limh0(1+h)1hChange variable h to h/xx is a nonzero constant.e=limh/x0(1+hx)xhe=limh0(1+hx)xhe1x=limh0(1+hx)xh1xe1x=limh0(1+hx)1hddxlnx=limh0ln(1+hx)1h=limh0lne1x=limh01x=1x

(fg)=fg+fg

(fg)=limh0f(x+h)g(x+h)f(x)g(x)h=limh0f(x+h)g(x+h)f(x)g(x)f(x+h)g(x)+f(x+h)g(x)h=limh0f(x+h)(g(x+h)g(x))+g(x)(f(x+h)f(x))h=limh0f(x+h)(g(x+h)g(x))h+limh0g(x)(f(x+h)f(x))h=limh0(f(x+h)(g(x+h)g(x))h)+limh0(g(x)(f(x+h)f(x))h)=(limh0f(x+h))(limh0g(x+h)g(x)h)+(limh0g(x))(limh0f(x+h)f(x)h)=f(x)g(x)+f(x)g(x)

xn

y=xnlny=lnxnlny=nlnxlny=nlnxddx(lny)=ddx(nlnx)yy=nxy=ynxy=xnnxy=nxn1

Series

Misc

Differentiation of Geometric Series

n=0qn=11q,|q|<1

The first derivative:

ddq(n=0qn)=n=1nqn1=ddq(11q)=01×1(1q)2=1(1q)2n=1nqn1=1(1q)2n=1nqn1q=q(1q)2n=1nqn=q(1q)2

The second derivative:

ddq(n=0nqn)=n=1n2qn1=ddq(q(1q)2)=1(1q)2q12(1q)(1q)4=12q+q2+2q2q2(1q)4=1q2(1q)4n=1n2qn1=1q2(1q)4n=1n2qn=q(1+q)(1q)(1q)4=q(1+q)(1q)3