Skip to content

The vibratring string

Simple harmonic motion

Let y(t) denote the displacement of the mass at time t.

Apply Hooke’s Law:

k (k>0) denotes the spring constant.

x denotes the displacement.

F denotes the force applied by the spring.

F=kxF=ky(t)

Apply Newton’s Law:

m denotes the mass.

a denotes the acceleration.

F denotes the force.

F=maky(t)=max=y(t)v=y(t)a=y(t)ky(t)=my(t)

Let c=k/m to simplify this equation.

ky(t)=my(t)0=my(t)+ky(t)my(t)+ky(t)=0y(t)+kmy(t)=0c=k/mc2=k/my(t)+kmy(t)=0y(t)+c2y(t)=0

The general solution of that equation is given by:

y(t)=acosct+bsinct

Given y(0),

y(0)=acos(c×0)+bsin(c×0)y(0)=acos0+bsin0y(0)=a×1+b×0y(0)=aa=y(0)

Given y(0),

y(t)=acosct+bsincty(t)=acsinct+bccoscty(0)=acsin(c×0)+bccos(c×0)y(0)=acsin0+bccos0y(0)=ac×0+bc×1y(0)=bcb=y(0)c

Since a=y(0) and b=y(0)c:

y(t)=acosct+bsincty(t)=y(0)cosct+y(0)csinct

Given Angle Subtraction Theorem:

α,βR

cos(αβ)=cosαcosβ+sinαsinβ

Let α=ct, β=φ:

cos(ctφ)=cosctcosφ+sinctsinφ

Let A>0:

Acos(ctφ)=Acosctcosφ+AsinctsinφAcos(ctφ)=(Acosφ)cosct+(Asinφ)sinct 

Given:

y(t)=acosct+bsinctAcos(ctφ)=(Acosφ)cosct+(Asinφ)sinct

Thus:

a=Acosφb=Asinφy(t)=Acos(ctφ)Acos(ctφ)=acosct+bsinct

Given the Pythagorean Identity:

sin2θ+cos2θ=1

Let θ=φ:

sin2φ+cos2φ=1(bA)2+(aA)2=1b2+a2=A2A=a2+b2

For equation:

Acos(ctφ)=acosct+bsinct

A denotes the amplitude.

c denotes natural frequency.

φ denotes phase.

2π/c denotes the "period" of the motion.

Derivation of the wave equation

1c22ut2=2ux2

Let x=aX, t=bT, U(X,T)=u(x,t) (a and b are positive constants):

2UX2=a22ux22UX2a2=2ux22UT2=b22ut22UT2b2=2ut2

Replace original equation:

1c22u2t=2u2x1c22UT2b2=2UX2a2a2c2b22UT2=2UX2

If we choose a,b properly, we can let a2c2b2=1, and get:

2UT2=2UX2