Skip to content

Expectation

Linearity

E[aX+b]=x(ax+b)p(x)=x(axp(x)+bp(x))=xaxp(x)+xbp(x)=axxp(x)+bxp(x)=aE[X]+b

Variance

Var(X)=E[X2]+E[X]2

Var(X)=E[(Xμ)2]=x(xμ)2p(x)=x(x22xμμ2)p(x)=x(x2p(x)2xμp(x)+μ2p(x))=xx2p(x)x2xμp(x)+xμ2p(x)=xx2p(x)2μxxp(x)+μ2xp(x)=E[X2]2μE[X]+μ2×1=E[X2]2μμ+μ2=E[X2]μ2=E[X2]E[X]2

Binomial Distribution

expectation

E[X]=k=0nk(nk)pk(1p)nk=k=1nk(nk)pk(1p)nk=k=1nkn!k!(nk)!pk(1p)nk=k=1nn!(k1)!(nk)!pk(1p)nk=k=1nn(n1)!(k1)!(n1(k1))!pk(1p)nk=nk=1n(n1k1)pk(1p)nk=npk=1n(n1k1)pk1(1p)nk=npk=1n(n1k1)pk1(1p)(n1)(k1)Let m=n1j=k1:=npj=0m(mj)pj(1p)mjj=0m(mj)pj(1p)mj is the sum of all probabilities of Bin(m,p),=np×1=np

variance

Var(X)=E[X2]E[X]2=E[X2](np)2

The proccess is similiar to above.

E[X2]=k=0nk2(nk)pk(1p)nk=k=1nk2(nk)pk(1p)nk=nk=1nk(n1k1)pk(1p)nk=npk=1nk(n1k1)pk1(1p)n1(k1)Let m=n1j=k1:=npj=0m(j+1)(mj)pj(1p)mj=np(j=0mj(mj)pj(1p)mj+j=0m(mj)pj(1p)mj)j=0mj(mj)pj(1p)mj is the expectation evaluated above=np(mp+1)=np(npp+1)=(np)2np2+np=(np)2+np(1p)E[X2](np)2=(np)2+np(1p)(np)2=np(1p)

Geometric Distribution

expectation

E[X]=k=1k(1p)k1p=pk=1k(1p)k1Let q=1p,=pk=1kqk1=pqk=1kqkThis is the arithmetico-geometric sequence.Apply sum formula,=pqq(1q)2=p(1(1p))2=pp2=1p

variance

Var(X)=E[X2]E[X]2=E[X2]1p2E[X2]=k=1k2(1p)k1p=pk=1k2(1p)k1Let q=1p,=pk=1k2qk1

See Differentiation of Geometric Series.

pk=1k2qk1=pqk=1k2qk=pqq(1+q)(1q)3=p(1+q)(1q)3=p(1+1p)(11+p)3=2pp2p3=2pp2Var(X)=E[X2]E[X]2=2pp21p2=1pp2

Poisson Distribution

probability mass function

Derived from binomial distribution,

limn(nk)(λn)k(1λn)nk=limnnkk!λknk(1λn)n(1λn)k=λkk!eλ1=eλλkk!

expectation

E[X]=k=0keλλkk!=eλk=0kλkk!=eλk=1kλkk!=eλk=1λk(k1)!=λeλk=1λk1(k1)!Let j=k1,=λeλj=0λjj!By the definition ex=n=0xnn!,=λeλeλ=λ

variance

Var(X)=E[X2]E[X]2=E[X2]λ2E[X2]=k=0k2eλλkk!=eλk=0k2λkk!=eλk=0(k(k1)+k)λkk!=eλ(k=0k(k1)λkk!+k=0kλkk!)k=0kλkk! is evaluated above.k=0k(k1)λkk!=k=2k(k1)λkk!=k=2λk2λ2(k2)!=λ2k=2λk2(k2)!Let j=k2=λ2j=0λjj!=λ2eλeλ(k=0k(k1)λkk!+k=0kλkk!)=eλ(λ2eλ+λeλ)=eλeλ(λ2+λ)=λ2+λE[X2]λ2=λ2+λλ2=λ